Scw1p antagonizes the septation initiation network to regulate septum formation and cell separation in the fission yeast Schizosaccharomyces pombe.

نویسندگان

  • Quan-Wen Jin
  • Dannel McCollum
چکیده

Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Delta mutant), have defects in cell separation. Both the scw1-18 and scw1Delta mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Delta. scw1Delta does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Delta may function downstream of the SIN to promote septum formation, since scw1Delta can rescue the septum formation defects of the cps1-191beta-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic interactions in the control of septation in Schizosaccharomyces pombe.

We have used genetic and molecular techniques to investigate the interactions among genes required for the initiation and regulation of septum formation in Schizosaccharomyces pombe. Our data suggest that the products of the cdc7, cdc11, cdc14 and cdc16 genes interact. These activities may regulate the function of the cdc15 gene product. A model for the control of septation in fission yeast is ...

متن کامل

An overview of the fission yeast septation initiation network (SIN).

The fission yeast septation initiation network, or SIN, is a signal transduction network that is required for septum formation in Schizosaccharomyces pombe. Its activity is tightly regulated through the cell cycle, to ensure proper co-ordination of mitosis and cytokinesis. SIN signalling requires three protein kinases for its function and is mediated by a ras-superfamily GTPase. We discuss the ...

متن کامل

Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans.

The kinase cascade of the septation initiation network (SIN), first revealed in fission yeast, activates the contraction of the actomyosin ring, and plays an essential role in fungal septation. Mob1p, an evolutionarily conserved SIN protein, is associated with the most downstream kinase of this cascade in fission yeast. In this study, the mobA gene encoding a homologous protein was isolated fro...

متن کامل

A role for the septation initiation network in septum assembly revealed by genetic analysis of sid2-250 suppressors.

In the fission yeast Schizosaccharomyces pombe the septation initiation network (SIN) is required for stabilization of the actomyosin ring in late mitosis as well as for ring constriction and septum deposition. In a genetic screen for suppressors of the SIN mutant sid2-250, we isolated a mutation, ace2-35, in the transcription factor Ace2p. Both ace2Delta and ace2-35 show defects in cell separa...

متن کامل

The nucleolar Net1/Cfi1-related protein Dnt1 antagonizes the septation initiation network in fission yeast.

The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe, and Saccharomyces cerevisiae, respectively. One function of these pathways is to keep the Cdc14-family phosphatase, called Clp1 in S. pombe, from being sequestered and inhibited in the nucleolus. In S. pombe, the SIN and Clp1 act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2003